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Abstract

A definition and mathematical treatment to calculate the filling factor in a pulsed electron paramagnetic resonance
(EPR) experiment are presented. The differences between filling factors in traditional, continuous wave (CW)-EPR
experiments (#), and in pulsed-EPR experiments (7,,), are discussed. We present some examples to demonstrate how
11, depends upon the particular pulse sequence and sample characteristics. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The term filling factor’ in CW-electron para-
magnetic resonance (EPR) measurements was in-
troduced by Feher [1]. It relates the EPR signal
intensity with the sample geometry and dielectric
properties. Knowledge of the filling factor of a
certain sample inside a specific cavity is important
in many aspects of EPR spectroscopy. The gen-
eral description given for calculating the filling
factor in a CW-EPR experiment is [1]:
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where H, is the microwave field intensity, V is the
sample volume and V is the cavity volume. Hav-
ing calculated the filling factor of a sample, we
can estimate its EPR signal intensity, Sgpg, via the
relation:

Sepr € 2 "n0L, ()

where Q; is the quality factor of the loaded
cavity, y” is the sample susceptibility and # can be
estimated via Eq. (1) quite accurately. It is easy to
calculate # if we assume that the inserted sample
does not perturb the magnetic fields in the cavity.
In such a case, one can use the analytical expres-
sions of the fields inside the cavity [2]. It is
obvious, however, that in most cases this approxi-
mation is oversimplified and is not accurate. In
other words, # should be calculated under condi-
tions where the fields in the cavity change upon
sample insertion. Thus, one should compensate
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the analytical expression for # by semi-empirical
methods [3,4], or by calculating the fields’ distri-
bution by numerical calculations [5]. In terms of
Eq. (2), it is evident that # is very important with
respect to the signal-to-noise ratio [1], optimal
sample size [1,2], and quantitative measurements
of the number of spins in a given sample [5-7].
Despite the increase in EPR data employing
pulsed-EPR or Fourier transform EPR (FT-
EPR), we have realized that the relevant filling
factor has not yet been treated in these types of
experiments. This might be due to the fact that
pulsed-EPR is relatively new and has not been
employed much in quantitative work on magne-
tization measurements. It is noteworthy that
pulsed-NMR, although much more mature, still
uses the conventional CW filling factor defini-
tions, mainly because of the fact that the wave-
length is much larger than the dimensions of the
‘cavity’” used, and thus the fields, in term of mag-
nitude and phase, are rather homogenous. In
EPR, however, the cavity’s dimensions are larger
than the wavelength, and variations of field am-
plitudes and phases must be considered as well. It
is evident, therefore, that the CW treatment can-
not be applied to the pulsed case.

Several publications are related to some aspects
of signal intensity, which are unique in pulsed
experiments. Based on the amplitude of the mag-
netization generated in the xy plane, Bowman [8]
has treated the case of signal intensity in pulsed
EPR, by taking into account the pulse length and
microwave frequency. His method can be applied
to many pulse sequences in a general way, by
employing the Jaynes [9] and Bloom [10] treat-
ment in NMR experiments. However, Bowman’s
approach lacks the relationship between the posi-
tion of the xy magnetization in the cavity to the
efficiency of it’s coupling to the detector outside
the cavity. This point shall be further clarified in
the next chapter. Recent publication by Eaton
and co-workers [11] calculated the EPR signal
intensity obtained in a two-pulse Hahn echo ex-
periment. The later treatment is very accurate and
takes into account both the xy magnetization
distribution and the coupling of this magnetiza-
tion to the detector. Nevertheless, their study is
restricted to the two-pulse Hahn echo experiment,

without elaborating on the difference between the
pulsed- and CW-EPR methods.

Recently, we have developed an experimental
method, which requires the evaluation of the rela-
tive contributions to the overall pulsed-EPR sig-
nal intensity from different parts of a sample in a
rectangular cavity [5,12]. The detailed treatment
of the problem discussed in Ref. [12] is presented
here. It is an extension of the studies described in
Refs. [8,11] and is based on a new approach,
which can be applied to the most common pulse
sequences. In particular, it is useful in many light-
induced FT-EPR experiments. This method al-
lows one to evaluate the signal intensity via the
filling factor (#,), described in this paper, in a
pulsed experiment. We will present some exam-
ples, which will better clarify the difference be-
tween CW and pulsed-EPR filling factors.

2. Filling factor in pulsed-EPR experiments

Every pulse experiment consists of at least two
stages: (a) excitation by a particular pulse se-
quence; and (b) free induction decay (FID) or
echo detection. In the first stage, magnetization is
created in the xy plane in the laboratory frame
(where the z-axis is the direction of the DC mag-
netic field), and in the second stage, the precessing
magnetization in the xy plane, M, , generates
magnetic fields, which induce a voltage in the
detector. For such an experimental setup an
analogous term to the filling factor in the CW
case should be considered. The pulsed-EPR filling
factor should be a proportional parameter, which
is specific for sample geometry and dielectric
properties. Therefore, the pulsed-EPR signal in-
tensity following a pulse sequence should be
reflected by #,,. In other words, we would like to
present an analogous expression to Eq. (2), which
should be applicable to the pulsed-EPR case.
With respect to the two stages in each pulsed-EPR
experiment mentioned above, we can divide 7,
calculation into two parts, namely excitation and
detection. Following a specific pulse sequence in
the first part, we must calculate the amount of
precessing magnetization in the xy plane of the
laboratory frame of reference. This oscillating
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magnetization will probably vary along the sam-
ple. For example, in a one-pulse experiment, the
FID signal results from the oscillating magnetiza-
tion in the cavity. Because of the inhomogeneous
microwave field along the sample, different parts
of the sample will experience different flip angles,
and the oscillating magnetization will differ along
the sample. In the second part, we must evaluate
the signal at the detector induced by M,,. Again,
it is evident that if we take the same amount of
rotating magnetization and place it first at the
center of the cavity, and then near the cavity’s
walls, a much smaller voltage will be generated in
the detector in the later case.

In the first part, we evaluate M., at different
parts along the sample. The distribution of M, in
the sample depends on the specific pulse sequence
used, and should be calculated accordingly. In
order to present simple and closed form expres-
sions, the calculation of M, is made with several
simplified assumptions for the pulsed case. For
example, in a single pulse FID experiment, em-
ploying a rectangular cavity (Fig. 1), we can esti-
mate the rotating magnetization distribution as:

M, (x',y',z") = M§™-sin 0, Q)

where 0 is the flip angle between the total magne-
tization vector M and the laboratory z-axis, given
by:

0= 4[_[1_;(/()(:1;5:3 Z/) g’ (4)
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Fig. 1. A rectangular cavity for pulsed-EPR experiments. The
xyz coordinate system is the laboratory frame of reference,
where z is the direction of the external magnetic field, and
x'y'z" is the conventional frame of reference for a rectangular
EPR cavity. The dimension of the cavity along the x’-axis is a,

and the dimension of the cavity along the z’-axis is d.

where HT* is the microwave magnetic field at the
center of the cavity, which is assumed to corre-
spond exactly to a /2 pulse. Eq. (4) is exact for
on-resonance excitation. It is also a very good
approximation for off-resonance excitation in FT-
EPR experiments where the spectrum is narrow.
If we assume that the magnetic fields in the cavity
do not change with sample insertion, we can
combine Egs. (3) and (4) and use the analytical
expression for H . inside the cavity, [13] to obtain:

Mxy(x/9 yls Z/)

nx’ 2nz'\ w
= MF™P-sin<sin[ — — | =
0 s1n{s1n< P >cos< p )2}, %)

where ME™ is the absolute value of the total
magnetization at equilibrium, and « and d are the
cavity’s dimensions (Fig. 1). It is noteworthy that
in these calculations we assume the existence of a
homogenous sample with respect to spin concen-
tration. For on-resonance, or near-resonance sin-
gle pulse excitation along the laboratory x-axis,
M, will lie along the y-axis only, but may exhibit
different phases, i.e. it can be negative or positive.

The same approach can be applied to the case
in which M., is a consequence of a two pulse
sequence, e.g. Hahn echo. In such a case, the
refocused echo magnetization along the y-axis
will be [11]:

L H (XY, 2T
M,W(x',y',z')=M86h°~sm3(‘ L.y )>,

max
1x 2

(6)
and again, as in Eq. (5), by assuming no change in
the magnetic fields due to the sample insertion, we
obtain:

Mxy(x/a yls Z,)

nx’ 2nz'\ ©
— Mecho, s 03 o3 5 7
6-ho-sin {sm(a )cos< 7 >2} (7

The above examples provide a simplified calcu-
lation of M|, distribution along the sample vol-
ume. In general, the flip angle in a specific
position should be calculated numerically by tak-
ing into account the magnitude of the magnetic
fields at each point in the cavity, with the sample
inserted in it [5]. In most pulse sequences, the
method of Jaynes [8,9] can be used to have the
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exact expressions for M. In more complex spin
systems, a full density matrix approach should be
employed [14], taking into account that M, is a
complex number with an out-of-phase magnetiza-
tion along the x-axis.

Following the excitation part treated above, we
shall now discuss the detection part, which in-
volves the calculation of the EPR signal from the
precessing magnetization, in the laboratory xy
plane, where M, is placed at various sites inside
the cavity. In terms of the electromagnetic prob-
lem to be solved, we consider a rotating magnetic
unit dipole source in an empty cavity, which
radiates inside and outside the cavity [15]. The
rotating dipole induces local oscillating magnetic
fields, which propagate towards the detector.
These local fields can be represented as two linear
sources, one along the cavities x’-axis and one
along the cavities z’-axis, whose intensities are
out-of-phase by n/2 (notice that the magnetization
precesses in the x'z’ plane).

treatment must be applied to each point in the
sample. Thus, assuming there is a homogenous
equal distribution of rotating M, in the entire
sample volume, the voltage (i.e. the EPR signal)
in a linear receiver will be proportional to:

SEPR

J (H (X', y", 2) + HiAx', y', 2) €72) d V],
Vs

s

oC

®)

where the magnetic fields in the integral are those
induced by a source outside the cavity while the
sample is inserted.

Eq. (8) assumes a homogeneous precessing
magnetization of unit value over the entire sample
volume. In practice, M,, distribution in not ho-
mogeneous and Eq. (8) should be modified to
include this inhomogeneity (Egs. (5) and (7)). In
such a case, the normalized expression with re-
spect to the maximum magnetic field, magnetiza-
tion, and sample volume is:

J (Hlx'(x/’ y/n Z/) + Hl:’(x/n y/a Zl) ein/2) Mxy(x/a y/a Z,) dv
VS

/ —
EPR C 1], =

In order to estimate the relative contribution to
the signal at the detector from the precessing
magnetization at various parts of the cavity, we
will use the reciprocity theorem of electromagnetic
fields [16]. Briefly, this theorem states that if a
certain voltage source, at point A, generates fields
at a point B, then by removing the source, the
fields at point B will generate the same voltage as
the original source at point A'. Thus, in order to
complete our second part of calculating #,, we
must first calculate the magnetic fields inside the
cavity with the sample inserted in it [5]. These
magnetic fields vary in magnitude and phase
along the sample. Using the reciprocity theorem,
we can deduce that the different magnetic fields
we have calculated represent exactly the different
weights, with respect to the voltage that a precess-
ing magnetization generates in the detector. This

! An example of this principle applied in magnetic resonance
is the energy of two interacting magnetic dipoles (the dipolar
interaction).

max max
HY M3V

’ )

where we have divided our answer by the maxi-
mum magnetic field, magnetization and sample
volume to obtain a dimensionless factor.

The integral in Eq. (9) can only be solved
numerically. Nevertheless, we can write down a
closed-form expression for the various pulse se-
quences, assuming that the magnetic fields do not
change with sample insertion into the cavity. Sub-
stituting in Eq. (9) the analytical expressions for
H,., and H,, [13] and M, (Eq. (5)) gives the
following equation for 5, in the case of a one-
pulse FID experiment:

_L —1 sin ' cos 2z
"=y ) T+ @ra "\ e d
+;cos s sin 2nz e"/?
(1 + Qa/d)")'"? a d
)L X 2nz'\ @
sm{sm<a> cos<d> 2} dV‘ (10)

A similar expression can be obtained for the
2-pulse Hahn echo or any other pulse sequences.
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Fig. 2. Functional dependence of 5 (dashed) and of #,, (solid) upon sample radius (r?). The filling factor increases with sample size.
The numerical calculation of », was carried out by employing our recently published algorithm [5] combined with Eq. (9). The
dashed line represents an r? linear dependence, which corresponds to the CW case [2].

When the unperturbed fields’ approximation due to
sample insertion does not hold, one should carry
out a numerical calculation to determine the elec-
tromagnetic fields inside the cavity with the sample-
inserted [5]. It should be noted that even in more
complex pulse sequences, the same algorithm for 7,
still holds and Eq. (9) should be used with a
quantum mechanical calculation of M, [14], as
discussed above.

There are several important differences, between
the filling factors obtained for the CW- and pulsed-
EPR experiments. In the CW case (for critically
coupled cavity), # is a normalized and dimension-
less figure ranging between 0 and 1, which increases
monotonously as the sample size increases. On the
other hand, #, cannot be normalized to be within
the range 0—1, and its magnitude is dependent on
the coupling parameters of the cavity. Moreover,
it does not necessarily increases monotonously;
different regions of the sample may contribute to
the signal with opposite phases, with the net result
of reducing the signal at the detector. An additional
important aspect of #,, is that it does not obey Eq.
(2). For example, a decrease in the Q-factor of the

cavity will not necessarily result in a decrease in the
EPR signal. This is due to the fact that the coupling
between the cavity and the waveguide may also
change; e.g. in the case of overcoupling, the signal
may increase.

An important factor, which should be considered
in the calculation of #,, is the possibility of non-
ideal pulses. Non-ideal pulses may result, for exam-
ple, in a situation where the angle of flipping for
a m/2 pulse is more than 90° in the center of the
cavity. This would therefore, result in an error in
the calculation of #,, and most of the signal would
arise from the peripheral sections of the cavity
rather than from the center of the cavity. Thus,
there is considerable importance of accurate setting
of the cavity for exact angle flipping at the center
using point-like sample.

We shall provide the reader with an example
regarding the differences between # and #, with
respect to changes in the sample size. It has been
shown [2] that when 2a = d, 5 for the CW case can
be expressed in a closed form where it is propor-
tional to the sample volume, i.c. r>. Fig. 2 shows
11, for a single pulse FID experiment, as a function
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of r? (sample radius). The calculation was per-
formed by employing Eq. (10) for X-band fre-
quency and cavity’s dimensions of 2a =d =7 cm.
Inspection of the curves indicate that because of
the destructive interference effect, 7, <, particu-
larly for large values of r2. In a multi-pulse se-
quence, the difference between # and 7, increases.
In addition to the above arguments, we should also
consider the relative contribution of different sam-
ple points along the x-axis. As the number of
pulses in the sequence increases, the relative contri-
bution of the ‘peripheral’ regions of the sample to
the relevant EPR signal is reduced substantially.
This is different from the CW-case, where the
contributions from different regions of the sample
are nearly fixed and do not drop as fast as we move
from the center of the cavity. This case is exem-
plified in Figs. 3 and 4. It can be seen that for a
single pulse sequence, the relative importance of
the ‘peripheral’ sites on the sample with respect to
the overall EPR signal is even greater than in the

CW case. However, the more pulses employed in
the sequence, the less important these peripheral
sections become. It is also noted that the differ-
ences between 5 and 7, are small in the center of
the sample.

3. Conclusions

We have presented a definition of 7, and its
mathematical derivation in a pulsed-EPR experi-
ment. Although we have mainly concentrated on
rectangular EPR cavities, the method can be ap-
plied to any cavity. This factor depends on quite a
few parameters, which exceed those in the CW
case, and therefore, is much less ‘universal’ in its
definition and calculation. For example, 7, de-
pends upon the specific pulse sequence employed
and the matching parameters of the cavity, factors
that are not relevant for the CW-EPR case. Never-
theless, #, is important for calculation of the
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Fig. 3. Numerical calculation of the signal intensity as a function of sample length (for a radius of 2.5 mm, in a rectangular cavity).
The calculation was carried out for CW-EPR [2] and two different pulsed-EPR experiments, using Eq. (9). All lines show a
saturation effect due to the small contribution of the outer parts of the sample to the EPR signal. CW-EPR (solid line, ), single
pulse FID (dotted line, #,), and two-pulse Hahn echo (dashed line, #,) are shown. Notice that as the pulse sequence is more
complex, the relative contribution from upper and lower parts of the inserted sample is decreased. This feature is important for the
evaluation of the relative contribution from irradiated and non-irradiated parts of the sample in an optical excitation experiment

[12].
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Fig. 4. Numerical calculation of the signal intensity as a
function of distance along the sample assuming uniform spin
distribution. The calculation was carried out for CW-EPR [2]
and different pulsed-EPR experiments (using Eq. (9)). CW-
EPR (solid line) exhibits a cos®> x dependence. Single pulse
FID case (dotted line) and two-pulse Hahn echo case (dashed
line) are shown. Magnetic fields calculations were carried out
by a full numerical solution of the Maxwell equations [5] for a
quartz tube of 2.8 mm i.d. and 4 mm o.d. in an X-band cavity.
See also comments in Fig. 3. This type of calculation is
important for the evaluation of the relative contribution from
lit and unlit parts of the sample in an optical excitation
experiment [12].

relative contribution of different regions in the
sample to the overall EPR signal and for the
comparison between different samples under the
same cavity’s conditions. These considerations
are of prime importance in the analysis of light-
induced FT-EPR experiments where the laser
beam illuminates only part of the sample [12].
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