
Spectrochimica Acta Part A 56 (2000) 363–371

Filling factor of a paramagnetic sample in a rectangular
cavity: theory and application

Aharon Blank *, Haim Levanon
Department of Physical Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew Uni6ersity of Jerusalem,

91904 Jerusalem, Israel

Received 10 June 1999; accepted 17 September 1999

Abstract

A computational method is presented for calculating the filling factor of an electron paramagnetic resonance (EPR)
tube in a rectangular TE102 cavity. The algorithm employs the conventional finite element method. In addition to the
filling factor, the algorithm allows to calculate the quality factor and the reflection coefficient of the loaded cavity.
This method allows calculating very accurately the EPR signal intensities from which the spin concentration of
paramagnetic samples can be determined. A comparison between the predicted EPR signal intensities to several
experimental results was found to be satisfactory. The method also allows optimizing the EPR tube dimensions and
its glass quality to improve measurement sensitivity. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Determination of spin concentration by EPR is
of importance [1–3]. In such experiments, mea-
surements of the number of unpaired spins are
not possible without calibrating the instrument
response relative to a known standard. The
difficulty in using standards is that both the mag-
netic and dielectric properties of the sample
should be taken into account. These properties
are the magnetization (permeability, m) and the
dielectric constant (permittivity, o). Although

samples are usually placed about the node of the
electric field, the specific dielectric properties still
have a considerable effect on the electric and
magnetic fields in the cavity. As a consequence,
the filling and quality factors of the cavity (h and
Q) are strongly dependent upon the specific sam-
ple inserted. This dependency must be taken into
consideration when the concentration of spins of
the reference and the unknown sample are re-
quired to be determined accurately.

The influence of the sample on the cavity’s
properties was treated semi-empirically in previ-
ous studies [1,4]. To the best of our knowledge,
the most accurate approach was made by employ-
ing the ‘field compression factor’ method to de-
scribe the change in the magnetic field in the
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Fig. 1. Typical EPR instrumentation layout employed in the
present study.

cavity upon sample insertion [1]. This method
applies to the EPR experimental configuration
shown in Fig. 1. Under such conditions, the field
modulated EPR signal is proportional to [1]:

V=V0QL(G2−G3)(1+G3)(
&

V s

B1
2B2 dV/Wst) (1)

where V0 is the incident microwave voltage; QL is
quality factor of the loaded cavity; G2, G3 are the
reflection coefficients from the matched load and
the cavity, respectively; B1, B2 are the microwave
and modulation field amplitudes, respectively in-
tegrated over the sample volume (Vs); and Wst is
the total energy stored in the cavity, which is
given by:

Wst=
1
2
&

V cavity

B1
2

m
dV (2)

Fig. 2. Sample in a cavity as modeled by the FEM method (dimensions are in cm). (a) General 3-D view of the cavity with the
cylindrical sample in it and the coupling iris; (b) FEM grid of the cavity and sample. The thick line represents cavity boundaries.
The boundary conditions on the cavity are imposed by perfect conductor boundary conditions except for the coupling wall, which
has a hole in it. An additional three segments are added before the cavity coupling wall and TE102 mode boundary conditions are
imposed on the leftmost wall. The grid size is changed according to sample position; (c) The FEM representation of the iris.
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Fig. 3. The six edges of the tetrahedron defined in the numerical procedure. The electric fields are calculated along these edges.

Fig. 4. Field distribution inside an X-band TE102 (1.016; 2.28; 4.15 cm) cavity with an empty quartz tube with inner radius of 2 mm,
and outer radius of 3 mm. (a) The magnitude of Ey as a 2-D presentaTion in the y=0.5 cm plane (left) and 1-D presentation along
the z-axis of the cavity in y=0.5 cm, x=1.15 cm; (b) The magnitude of Hx as a 2-D presentation in y=0.5 cm plane (left) and
1-D presentation along the z axis of the cavity in y=0.5 cm, x=1.15 cm. Notice the increase in magnetic field amplitude inside the
tube.

Inspection of Eq. (1) shows that the EPR signal
is directly proportional to the quantity z=
	Vs

B1
2B2 dV. Therefore, one can introduce the

compression factor term, c (= [z(with sample)/
z(without sample)]), which describes the field
compression when the sample is inside the cavity.
Although the mathematical treatment associated
with the compression factor is accurate, obtaining

the actual quantity of this factor is complicated.
This is because of the fact that EPR samples are
usually placed along the long axis (x) of the
rectangular cavity (Fig. 2a). Under such condi-
tions, one can not derive exact analytical expres-
sions for calculating c, since the problem becomes
a three-dimensional, with no separable wave
equation. However, if the sample is placed along
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Fig. 5. Schematic presentation of the cavity and sample (top)
and its transmission lines analogous representation (bottom).

inserted along the z-axis of the cavity is not
practical, experimentally and computationally. In
most EPR cavities the sample is inserted along the
x-axis. Thus, one is left with two possibilities:
1. Empirical measurement of the compression

factor for different tube dimensions, solvents,
etc., as was carried out by Casteleijn [1] with a
small DPPH grain in the middle of the sample
or;

2. the method we introduce here that is much
more general and accurate, which uses numeri-
cal calculations of the electromagnetic (EM)
fields inside the cavity.

Remarkable progress has been achieved in re-
cent years in the field of computational electro-
magnetics, which models and solves numerically
the electromagnetic fields in variety of structures
[6]. Computational electromagnetic techniques
were previously used to design new EPR cavity
structures [7], and general purpose commercial
computational electromagnetic software is now
widespread [8]. In spite of the existence of such
commercial general-purpose codes, we saw the
importance of introducing new software for solv-
ing the specific problem that was described above.
This software is more efficient than general-pur-

the y-axis, the two-dimensional symmetry of the
TE102 mode in the cavity is not broken and one
can derive, by the variational principle, a rather
accurate closed form expression for the field in-
side the sample [5]. The case where the sample is

Table 1
Comparison between calculated and experimental EPR results for a point sample inside a quartz tube with several tube dimensions

Df of resonance frequencyb hcalc
c (normalized)do/di

a (mm) Qcalc
d EPR signalg (normalized)Tcalc

e rcouple
f (mm)

(MHz)

[17] [17] Calc.Calc.

1000 0.950 4.41 1 1Empty 0 1

999.37 �1 4.88 1.2 1.194.0/2.9 15 12 1.13
1.291.304.94�1998.305.2/3.6 1.2343632

9.3/8.5 4.7299 1.32 1.19110 1.14 993.3 �1
22 26 1.361 998.124.3/1.1 �1 4.87 1.32 1.42
94 4.957.4/5.6 �1993.371.41114 1.471.41

�1993.51.71121 5.21946.6/1.3 1.77 1.79

a Inner and outer diameters of the tube (in mm).
b Measured and calculated frequency shift of the cavity relative to empty cavity.
c Normalized filling factor (relative to empty cavity).
d Calculated quality factor of the cavity with the tube, assuming an empty cavity Q=1000.
e Calculated transmission coefficient into the cavity (1+G).
f Calculated coupling radius of iris to achieve critical coupling.
g Calculated and measured EPR signal relative to an empty cavity. The calculated EPR signal is hQT.
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Table 2
Calculated and experimental results of EPR signal intensity of DPPH in various solvents

tan d ×104 hSolvent QLo%/o0 T hQTa EPR signalb

10 0.042985 599.2Toluene 0.9732.24 1 1
1.7Ethanol 680 0.0423 569.37 0.921 0.88 0.86

8100 0.0509 141.058.9 0.934Methanol 0.295 0.31
16 0.0428Carbon tetrachloride 598.892.17 0.972 0.99 0.98

a This calculated quantity is proportional to the EPR signal and is normalized to the signal of DPPH in toluene.
b This measured quantity is normalized to toluene.

pose codes and includes algorithms, which enables
the use of optimized tube dimensions to gain
maximum signal sensitivity. An additional prob-
lem that the code handles, and which is not
addressed by general computational electromag-
netics codes, is a numerical mimicry of the process
of cavity matching. Namely, for different sample
properties, the cavity’s matching iris dimensions
must be changed to achieve critical coupling.

2. The Numerical Algorithm

The numerical algorithm, which was used to
calculate the EM fields inside a rectangular cavity
with an inserted sample is based on the finite
element method (FEM) technique [9,10] with the
specific approach developed by Ali [11]. The FEM
technique is based on a numerical solution of the
‘weak representation’ of the electromagnetic wave
equation. This approach starts with the three-di-
mensional wave equation:

9×
� 1

mr(r)
9×E(r)

�
−k0

2or(r)E(r)= − jk0Z0J(r)

(3)

where mr is the permeability, which can be a
function of the space coordinates (r); E is the
electric field vector; k0 is the free-space wave
number (2p/l); or is the permittivity; Z0 is free
space impedance (about 377 V); and J is the
vector of an electric current source.

Numerical manipulation of this equation results
in the linear set of equations:

[Amn ][En ]= [Rm ] (4)

where:

Amn=
&

V

� 1
mr

(9×wn(r)) · (9×wm(r))

− jk0Z0orwn(r) · wm(r)
n

dV

and

Rm= − jk0Z0
�&

V

[Jm(r)] · wm(r) dV

−
7

S

Jm(r) · wm(r) dS
n

where n and m are indices which cover all the
discrete volumes of the relevant space (Appendix
A).

Since most of the theory behind this derivation
appears only in a recent Ph.D. dissertation [11],
we provide the reader with a detailed discussion in
the Appendix A. Nevertheless, we can give some
basic physical insight of Eq. (4), which represents
a linear relation between the electric fields at
specific points in space (matrix A in Eq. (4)).
Thus, the numerical algorithm, by dividing the
space into small volumes, allows the electric fields
to be obtained at any point (vector E in Eq. (4))
because of arbitrary excitation (vector R in Eq.
(4)). The algorithm divides the relevant space into
tetrahedrons (Fig. 3) and each tetrahedron can
have it’s own electromagnetic properties (or and
mr).

The solution of this linear system of equations
is made by an iteration procedure to finally obtain
the electric field at all nodes. With this field
information all the electromagnetic properties of
the cavity, whether it is empty or occupied by a
sample, can be calculated. It is important to em-
phasize that although the fields are calculated in a
tetrahedron structure, the algorithm uses rectan-
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gular boxes (hexahedrons) to define the geometry
of the structure, which later are divided into
tetrahedrons (five tetrahedrons in each hexahe-
dron). The results are also reported per
hexahedron.

3. Applications

3.1. Determination of spin concentrations by EPR

As was noted in the introduction, accurate de-
termination of spin concentrations by EPR exper-
iments suffers from the fact that the reference and
unknown samples usually don’t have similar per-
mittivity. This problem was demonstrated in a
recent experiment, where measurements of the
same samples with different standards resulted in
different results [2]. It should be pointed out that
the experiments were carried out without taking
into account the different permittivity values of
the various standards. The inconsistencies in the
results between those experiments were substan-
tial. These discrepancies can be accounted for as a
result of not taking into account the permittivity
differences, which can easily affect the accuracy
within the order of 50–100% [1].

To account for permittivity differences, one can
use the semi-empirical ‘field compression factor’
method. However, acquiring this factor requires
elaborated measurements, which may themselves
be very inaccurate. Therefore, without any simple
computational procedure in hand, the effects of
the differences in the permittivity of the sample
and standard are rarely considered. This is why
and where the numerical electromagnetic calcula-
tion can make its substantial contribution.

We describe bellow the application of our nu-
merical procedure to treat these types of prob-
lems. By neglecting the influence of field
modulation Eq. (1), and assuming constant inci-
dent microwave power and matching (V0 and
G2−G3 are constant) the EPR signal is propor-
tional to QLhT, where T is the transmission coeffi-
cient of the cavity (namely, T=1+G3) and h is
the filling factor with its conventional definition
[12]. Calculation of h and QL of the cavity, re-
quires accurate knowledge of the electric and

magnetic fields’ distribution inside the cavity.
However, these fields distribution does not de-
pend upon the way the cavity is being excited. In
other words, the fields at resonance are eigen
modes of a specific cavity and sample structure.
This fact enables to treat the problem with a very
compact close structure in terms of the FEM
formulation, as shown in Fig. 2b. Most of the
computational domain is the cavity itself, and
only several hexahedrons which are outside the
cavity, are needed for coupling the microwave
source to the cavity. Fig. 2b presents an addi-
tional feature, which is unique to the FEM formu-
lation, and enables the use of an adjustable
hexahedron grid size. With this feature, the num-
ber of unknowns is reduced and the thin tubes
inside the cavity can be modelled accurately and
efficiently.

The results of such calculations are presented in
Fig. 4. It can be seen that one can obtain com-
plete knowledge of the electric and magnetic fields
distribution in the cavity. After having calculated
the electric and magnetic fields, the filling factor
can be obtained by Eq. (5):

h=
%
n

(Hx
n2+Hz

n2) · Vn

%
m

(Hx
m2+Hz

m2) · Vm

(5)

where n is an index running over all the hexahe-
drons of which the sample volume consists of, and
m is an index running over all hexahedrons of the
entire cavity; and Vn is the volume of the nth
hexahedron. We take into account only Hx and
Hz because Hy is usually negligible (although, if
required, it can be easily taken into to the calcula-
tion). We should also note that we consider H and
not B because we assume that the permeability is
of free space, even in the sample. Inspection of
Fig. 4, shows that inserting an empty tube inside
the cavity causes the magnetic field to become
stronger inside the tube volume (i.e., the compres-
sion factor is larger than 1). In addition, the
z-dependency of the field is smaller inside the tube
(the field is almost constant with respect to the
z-axis).

As noted above, for most EPR spectrometers,
the signal is proportional to QLhT. Thus, full use



A. Blank, H. Le6anon / Spectrochimica Acta Part A 56 (2000) 363–371 369

of this computational method, for determining
the spin concentration in EPR experiments, can
be made only if we can calculate the change in
Q and T as a result of inserting different sam-
ples into the cavity. The empty cavity quality
factor, Qe, can be measured by network ana-
lyzer [13], or by measurement of the ringing
time after a microwave pulse (by the equation
Q=n0

e/ptR, where n0
e is the resonance frequency

of the empty cavity and tR is the ringing char-
acteristic time of the cavity). Once the empty
cavity Qe is known, we can calculate the total
QL (cavity and sample), through our knowledge
of the electric and magnetic fields in the cavity:

QL=Ã
Ã

Ã

Á

Ä

%
m

om¦ (Ey
m2+Ey

m2+Ey
m2) · Vm

%
m

(Hx
m2+Hz

m2) · Vm

+1/QeÃ
Ã

Ã

Â

Å

−1

(6)

where the summation is on the entire cavity vol-
ume. Note that om¦ (the imaginary part of the
permittivity) depends on the cell index, i.e. the
position in the cavity.

The resonance frequency of the cavity obvi-
ously changes as the sample is inserted. There-
fore, in order to find the new resonance
frequency, the calculation of QL (and h) is re-
peated several times (typically, ten times) until
the results converge to the new resonance fre-
quency of the loaded cavity (n0

L). The new reso-
nance frequency is also an important factor that
comes out of the calculation. At this frequency,
the final results of h, QL and T are obtained.

Unlike the calculation of QL and h (in a finite
closed domain), the calculation of T requires an
open domain. The accurate calculation of T is
important, because as different samples are in-
serted in the cavity, it’s reflection coefficient, G3,
changes, and as mentioned above, T=1+G3.
Finding G3 is not trivial, because in every CW
EPR measurement, the goal is to minimize G3

by changing the matching properties of the cav-
ity (i.e. to achieve critical coupling). We have
found that the analogous numerical-computa-

tional of the cavity matching may be described
by the following procedure:
1. After QL, h and n0

L are found, we calculate the
impedance matrix of the sample in the cavity.
This impedance matrix is shown in Fig. 5 and
is the general form of a symmetric four-termi-
nal microwave network [14]. The calculation
of the impedance matrix is made at the reso-
nance frequency by employing the FEM
procedure.

2. The impedance matrix of the coupling iris can
be calculated by a closed form expression
given elsewhere [14]. This calculation is done
for several iris diameters and, for each case,
the reflection coefficient of the whole structure
(shown in Fig. 5 in transmission lines represen-
tation) can be evaluated by standard transmis-
sion lines theory. The iris radius, which
corresponds to the minimal reflection coeffi-
cient, is chosen as the matching iris radius.

With the above numerical procedure, the EPR
signal, which is proportional to QLhT is obtained.

3.2. Signal to noise optimization

We have shown how to calculate the factor
QLhT that is proportional to the EPR signal.
Once this factor is known, it is possible to opti-
mize the signal-to-noise-ratio (SNR), namely, to
increase the EPR signal by maximizing QLhT.
The variables, which can be changed by our
program, are the tube’s inner and outer diame-
ters, keeping other variables, such as solvent
properties, cavity dimensions, etc., fixed. The
optimization can be carried out by several meth-
ods. Here, we have employed the Nedler-Mead
simplex search method [15,16]. For example, we
optimized the quartz tube dimensions of a para-
magnetic sample dissolved in toluene, in a stan-
dard TE102 mode cavity. The calculated optimal
tube dimensions are 4.2 and 4.8 mm for the
inner and outer radii, respectively. The opti-
mized inner and outer radii of the EPR tube
will, of course, depend on the sample and tube
dielectric properties (quartz, pyrex, etc.), and the
cavity’s dimensions. It is clear that for different
cavities and different samples, the optimized
tube dimensions are different.
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4. Numerical and Experimental Examples

To verify our calculations, based upon Ali’s
approach [11], we have compared our numerical
results to those available in the literature and to
experimental data gained in our study. Let us first
consider the experiment where a point sample
(DPPH) in a quartz tube was measured to acquire
the variations in the EPR signal intensity as a
function of the tube thickness [17]. The compari-
son of these results with our calculations is given
in Table 1. It can be seen that changing tube
dimensions can result in substantial changes in the
EPR signal intensity, which is followed closely by
the numerical calculations.

The second example emphasizes the importance
of using our approach in the determination of
spin concentration. As a reference, we have used a
small amount of DPPH, which was dissolved in
different solvents, i.e. ethanol, methanol, carbon
tetrachloride and toluene (:1 mM). All measure-
ments were taken shortly after sample prepara-
tion. The permittivity of the solvents at X-band
frequency, was obtained from known data [18],
and assuming that the DPPH effect on the solvent
permittivity is negligible. With a paramagnetic
sample or solution whose permittivity in the mi-
crowave regime is unknown, there are several
methods of determining this value [13]. Measure-
ments were made with an X-band CW spectrome-
ter (Varian model E-LINE) in a TE102 cavity
(1.02×2.29×4.15 cm), and 100 mW microwave
power. Quality factor of the empty cavity was
measured by the ringing time of the cavity, after a
strong microwave pulse using a Bruker pulsed
spectrometer (ESP 380E). The Q of the empty
cavity was found to be :600. Solvents were
placed in a quartz tube with an inner radius of 1.5
mm and an outer radius of 2 mm (with no finger
dewer). The results were digitized and integrated
twice, and were compared to the calculated ones
as shown in Table 2. Again, it can be seen that the
solvent properties can substantially affect the cav-
ity’s Q, h and G3, which results in differences in
the EPR signal intensity of the same amount of
spins.

5. Conclusions

We have presented a new computational
method to calculate the electromagnetic proper-
ties of a rectangular EPR cavity loaded with a
dielectric sample. The method should be used
when accurate knowledge of the number of un-
paired spins in the sample is required. The numer-
ical algorithm is versatile and accurately models
an EPR measurement. In other words, when a
new sample is inserted in the cavity, the frequency
is swept to find the new resonance frequency. In
addition, the iris changes its dimensions to
achieve the new critical coupling. Finally, at reso-
nance frequency and the optimal iris radius, the
EPR signal is calculated. Comparison with several
EPR measurements was found to be satisfactory.
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Appendix A. Derivation of the numerical linear
equations in the FEM formulation

We begin by multiplying Eq. (3) (in the main
text) by a vector weighing function, w(r), and
integrate over the volume V to obtain the ‘weak
form of the wave equation’:&

V

�
9×

� 1
mr

9×E(r)
�

· w(r)−k0
2orE(r) · w(r)

n
dV= − jk0Z0

&
V

[J(r)] · w(r) dV (A1)
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Using the Green’s first vector theorem we can
derive:&

V

�� 1
mr

9×E(r)
�

· (9×w(r))−k0
2orE(r) · w(r)

n
dV=

= − jk0Z0
�&

V

[J(r)] · w(r) dV−
7

S

J(r) · w(r) dS
n

(A.2)

where S is the surface enclosing the volume V.
The electric field and the vector function w are

modeled by sub-domain function wk(r) is defined
on separate tetrahedrons as:

wk(r)=
Á
Í
Ä

fk+gk×r r inside tetrahedron

0 r outside tetrahedron

where:

fk=
bk

6Ve

(r(7−k)1×r(7−k)2)

gk=
bkb(7−k)

6Ve

e(7−k)

k, 1...6 (The six edges of the tetrahedron as
defined in Fig. 3); Ve, volume of the tetrahedron;
ek, unit vector of the kth edge; bk, length of the
kth edge; rij, position of the point j (1 or 2) at the
ith edge.The electric field E within the volume Vq

of the tetrahedron can be expanded as:

E(r)= %
6

i=1

Ei
qwi(r) (A.3)

where {Ei
q} is a set of unknown complex scalar

coefficients which are yet to be found. Inserting
the expression for E(r) of Eq. (A.3) into Eq. (A.2)

will give a discreet form of Eq. (A.3) as a matrix
solution (Eq. (4) detailed in the main text):

[Amn ][En ]= [Rm ] (A.4)
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